EPSL:南羌塘地块中-晚三叠世古地磁结果揭示古特提斯洋晚期演化历史

文章来源: 发布时间:2025-05-20 15:57 作者: 浏览量:357

“基梅里陆块”是从南半球冈瓦纳大陆东北缘裂解出的带状大陆,其经历复杂的北向漂移过程后在中生代与北半球欧亚大陆南缘碰撞。在这一过程中,基梅里陆块扮演了分隔古特提斯洋和新特提斯洋的关键角色,其运动学过程对深入认识特提斯构造域演化和青藏高原形成等重大科学问题具有重要意义。然而,来自基梅里陆块群不同块体的古地磁、古生物等证据表明,基梅里陆块群在北向运动过程中各地块运动速度可能并不相同,具体表现为中段的运动速度可能快于东西两侧的滇缅马泰地块和伊朗地块的运动速度(如:Angiolini et al., 2013; Muttoni et al., 2009)。南羌塘地块是基梅里陆块群中段的重要组成部分,在东西向特提斯构造域与南北向青藏高原拼合体系中占据枢纽地位,因此精确厘定南羌塘地块的漂移历史对揭示特提斯洋开合机制以及欧亚大陆南缘多阶段增生过程具有关键意义。

为准确约束南羌塘地块运动学过程,我系程鑫教授、吴汉宁研究员课题组联合中科院地质与地球物理研究所、挪威奥斯陆大学等国内外多家单位研究人员开展深入合作,针对南羌塘地块中部改则县古姆乡中-上三叠统座倾错组灰岩和玄武岩开展了详细的构造磁学、岩石磁学、岩相学以及方解石U-Pb年代学研究。对两块灰岩样品开展原位方解石U-Pb定年,获得两块样品年龄分别为237.2±5.4 Ma(N=50,MSWD=3.4)和235.2±6.4 Ma(N=50,MSWD=2.2)(图1)。从玄武岩和灰岩样品中分离出了可靠的特征剩磁分量,计算南羌塘地块~235-237 Ma的古地磁极位于λ=32.3°N、φ=170.4°E、A95=4.8°,对应的古纬度为20.6±4.8°N(以采样位置33.1°N,85.3°E为参考点)。

1 座倾错组原位方解石U-Pb测年Tera-Wasserburg图解

这一结果表明南羌塘地块在~265 Ma至~236 Ma以~16.5 cm/yr的速度向北漂移(图2),随后北移速度放缓。结合地质证据判断龙木错-双湖洋在约237 Ma前范围有限但尚未完全闭合,古特提斯洋两支的最终闭合时间可能为230 Ma。

2 晚石炭世至晚三叠世南羌塘地块及其周缘地块的古纬度变化曲线(修改自Wei et al., 2022, 2023

研究结果以“A Cimmerian keystone: Middle-late Triassic paleomagnetic and calcite geochronologic constraints on the South Qiangtang Block”为题发表在《Earth and Planetary Science Letters》之上。研究得到国家自然科学基金、中国科学院抢占科技制高点攻坚专项以及挪威研究委员会共同资助。论文信息:Wei, B., Cheng, X., Domeier, M., Yang, P., Li, S., Xing, L., Jiang, N., Zhang, W., Zhang, J., Shen, Z., Chen, Q., Zhang, D., Zhang, M., Zhou, Y., Deng, C., Wu, H., 2025. A Cimmerian keystone: Middle-late Triassic paleomagnetic and calcite geochronologic constraints on the South Qiangtang Block. Earth and Planetary Science Letters 664, 119442. https://doi.org/10.1016/j.epsl.2025.119442

 

参考文献

Angiolini, L., Crippa, G., Muttoni, G., Pignatti, J., 2013. Guadalupian (middle Permian) paleobiogeography of the Neotethys Ocean. Gondwana Research 24, 173-184. http://dx.doi.org/10.1016/j.gr.2012.08.012

Muttoni, G., Gaetani, M., Kent, D.V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei, M., Zanchi, A., 2009. Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14, 17-48. https://doi.org/10.2113/geoarabia140417

Stampfli, G.M., Borel, G., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary science letters 196, 17-33. https://doi.org/10.1016/S0012-821X(01)00588-X

Wei, B., Cheng, X., Domeier, M., Jiang, N., Wu, Y., Zhang, W., Wu, K., Wang, B., Xu, P., Xing, L., 2022. Placing another piece of the Tethyan puzzle: The first Paleozoic paleomagnetic data from the South Qiangtang block and its paleogeographic implications. Tectonics 41, e2022TC007355. https://doi.org/10.1029/2022TC007355

Wei, B., Cheng, X., Domeier, M., Zhou, Y., Chen, Q., Jiang, N., Xing, L., Zhang, D., Li, T., Liu, F., 2023. Paleomagnetism of Late Triassic Volcanic Rocks From the South Qiangtang Block, Tibet: Constraints on Longmuco-Shuanghu Ocean Closure in the Paleo‐Tethys Realm. Geophysical Research Letters 50, e2023GL104759. https://doi.org/10.1029/2023GL104759